(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

U11(tt, N, X, XS) → U12(splitAt(activate(N), activate(XS)), activate(X))
U12(pair(YS, ZS), X) → pair(cons(activate(X), YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → activate(X)
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, n__natsFrom(n__s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, activate(XS))
tail(cons(N, XS)) → activate(XS)
take(N, XS) → fst(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
s(X) → n__s(X)
activate(n__natsFrom(X)) → natsFrom(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Rewrite Strategy: FULL

(1) CpxTrsToCpxRelTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to relative TRS where S is empty.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

U11(tt, N, X, XS) → U12(splitAt(activate(N), activate(XS)), activate(X))
U12(pair(YS, ZS), X) → pair(cons(activate(X), YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → activate(X)
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, n__natsFrom(n__s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, activate(XS))
tail(cons(N, XS)) → activate(XS)
take(N, XS) → fst(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
s(X) → n__s(X)
activate(n__natsFrom(X)) → natsFrom(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

S is empty.
Rewrite Strategy: FULL

(3) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
activate(n__natsFrom(X)) →+ cons(activate(X), n__natsFrom(n__s(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__natsFrom(X)].
The result substitution is [ ].

The rewrite sequence
activate(n__natsFrom(X)) →+ cons(activate(X), n__natsFrom(n__s(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / n__natsFrom(X)].
The result substitution is [ ].

(4) BOUNDS(2^n, INF)